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Abstract

Here we present an experimental technique using hot-wire
anemometry to measure the two-dimensional (2-D) energy
spectra of the streamwise velocity component (u). The mea-
surements are carried out in a turbulent boundary layer at fric-
tion Reynolds numbers of 1950 and 3350 and are validated
against the 2-D spectra obtained from the direct numerical sim-
ulation (DNS) of Silleroet al. [9] at matched Reynolds num-
bers. Based on these comparisons, a correction is introduced to
account for the spatial resolution associated with the initial sep-
aration of the hot-wires. These findings establish the proposed
technique for high Reynolds number flows in future works.

Introduction

Spectral scaling laws are important in turbulent boundary layer
studies as they provide information regarding the geometry
of turbulent structures and their contribution to the turbulent
kinetic energy. Among them,k−1

x scaling of one-dimensional
(1-D) streamwise spectra ofu in the inertial region of turbulent
boundary layer is of specific interest as it indicates the wall
scaling of turbulent structures. Here,kx is the streamwise
wavenumber. Previously, theoretical predictions ofk−1

x scaling
were based on dimensional analysis [6] and spectral overlap
arguments [7]. These findings were also found to be consistent
with the attached eddy hypothesis of Townsend [10], which
predicts the existence of geometrically self-similar eddies.
Consequently, a range of length scales exist that contribute
equally to the turbulent kinetic energy and thereby resultsin
a k−1

x behaviour in the 1-D streamwise spectra at sufficiently
high Reynolds numbers. Nevertheless, these predictions did not
get complete support from high Reynolds number experiments
and the existence of ak−1

x law still remains an open question
[5, 8].

Davidsonet al. [2] highlighted that the 1-D energy spectra
might not be an ideal tool to observe self-similarity. Their
work suggested that aliasing could contaminate the 1-D
streamwise spectra by artificially shifting the energy to lower
wavenumbers. Whereas, a 2-D spectrum details the contri-
bution of both the streamwise (λx = 2π/kx) and spanwise
(λy = 2π/ky, where ky is the spanwise wavenumber) length
scales to the total turbulent intensity. On the other hand, a
1-D spectrum is a line integral of a 2-D spectra and does not
reveal any information along the direction of integration.For
example, a 1-D streamwise spectrum only provides the energy
contribution by a particular streamwise length scale,λx, and
does not inform us of the range ofλy associated with that
particular λx. This leads to the aforementioned aliasing in
1-D spectra. The 2-D spectrum is devoid of such aliasing errors.

From dimensional considerations, Chunget al. [1] argued
that, in order to have ak−1

x behaviour in the 1-D spectrum,
a region of constant energy in the 2-D spectrum should be
bounded byλy/z ∼ f1(λx/z) and λy/z ∼ f2(λx/z) where f1
and f2 are identical power laws. At low Reynolds number,

Del Alamo et al. [3] reported that such a region of constant
energy is bounded at larger scales by a square-root relationship
of the form λy/z ∼ (λx/z)1/2. However, on the basis of
attached eddy hypothesis, the existence of geometrically
self-similar eddies (whose lengths scale withz) suggest
such a region at high Reynolds numbers to be bounded by
a linear relationship,λy ∼ λx. However, to discern such a
behaviour, 2-D spectra at high Reynolds numbers need to
be examined. As a first step towards high Reynolds number
results, this paper is concerned with establishing a reliable
experimental technique to measure 2-D spectra ofu. Validation
of the experimental results with required corrections to obtain a
well resolved 2-D spectra is described in the following sections.

It should be noted that, throughout this study,x, y and z de-
notes the streamwise, spanwise and wall-normal directionsre-
spectively andu, v and w denotes the corresponding velocity
components. Superscript ‘+’ indicates the normalisation us-
ing viscous length and velocity scales which areν/Uτ andUτ
respectively, whereν is the kinematic viscosity andUτ is the
friction velocity.

Experimental Setup

The experiments are conducted in the open return turbulent
boundary layer wind tunnel at The University of Melbourne.
The facility is a zero pressure gradient (ZPG) tunnel with a test
section volume of 6.7×0.94×0.38 m3. The experiments are
all conducted at a streamwise location ofx = 3.8 m, further
details are provided in table 1. Here we define the boundary
layer thickness,δ as the wall-normal distance where the mean
velocity achieves 99 % of the freestream velocity. Further,the
friction velocity, Uτ, is obtained by a Clauser chart method
using the log law constants,κ = 0.4 and A= 5.

The tailored experimental technique uses two single-wire
hot-wire probes: HW1 and HW2 (as shown in figure 1). The
length (l ) and diameter (d) of the hot-wire sensors are 500µm
and 2.5µm respectively to maintain anl/d ratio of 200 and
l+ ≈ 17. The hot-wires, operated using an in-house Melbourne
University constant temperature anemometer (MUCTA), are
sampled at 30kHz forT = 120 seconds. This corresponds to
about 32000 and 49000 boundary layer turnover time (TU∞/δ)
for Reτ = 1950 and 3350 respectively. Both hot-wires are
calibrated immediately before and after each measurement.
This allows us to account for any drift in the hot-wire voltage
during the measurements. HW1 is calibrated in the freestream
with respect to the known mean velocities obtained with a
Pitot-static probe. Since the arrangement did not allow HW2

U∞ (m/s) δ (m) Uτ (m/s) Reτ z+

15 0.056 0.545 1950 100
15 0.056 0.545 1950 200
25 0.061 0.86 3350 200

Table 1: Details of experimental data.



to move to the freestream, calibration information from HW1
is used to calibrate HW2, while placed inside the boundary
layer. This is achieved by placing both wires at the same
wall-normal location. Since this calibration is carried out
inside the turbulent boundary layer, the sampling time is
increased compared to the freestream calibrations to ensure the
convergence of mean velocity.

At the start of the measurement, HW1 and HW2 are positioned
close to each other, at a fixed wall-normal location, as shown
in figure 1. dyinitial corresponds to the initial centre to centre
spacing between the hot-wire sensors. For the present measure-
ments, both HW1 and HW2 are sampled simultaneously, with
HW1 at a fixed position, while HW2 is traversed in the span-
wise direction upto a final spacing of∆y∼ 3.5δ (see figure 1).
To acquire spatial information at smaller spanwise distances the
spanwise traversing mechanism of HW2 is traversed on a loga-
rithmic scale.

Figure 1: Schematic of the arrangement of hot-wires to measure
the spanwise correlation.

Calculation of 2-D Spectra

In the present work, the streamwise velocity fluctuations,u1
andu2, acquired simultaneously using HW1 and HW2 respec-
tively (for different spanwise spacings (∆y)) are used to con-
struct the 2-D correlation and thus the 2-D energy spectra of
u. To this end, HW2 is physically traversed to construct the
correlation in the spanwise direction. Thereafter, the useof
Taylor’s frozen turbulence hypothesis allows the construction of
correlation functions at different streamwise spacings (∆x). We
note, since the hot-wires (HW1 and HW2) are stationed at the
same wall-normal location, spanwise homogeneity within the
turbulent boundary layer can be assumed. As a consequence,
the entire spanwise correlation can be constructed from a se-
ries of independent two-point measurements conducted at dif-
ferent∆y. Hence, a 2-D correlation can be constructed by cross-
correlating the streamwise velocity time series acquired using
HW1 and HW2 by computing,

Ruu(∆x,∆y) = u1(x,y)u2(x+∆x,y+∆y). (1)

Figure 2(a) shows the 2-D correlation obtained along with the
projections of 1-D correlations. The black and red contours
correspond to the 1-D streamwise and spanwise correlationsre-
spectively. Here,Ruu is normalised using the variance of the ve-
locity time series to getRuu. Figure 2(b) shows the 2-D energy
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Figure 2: (a) Normalised 2-D correlation constructed from the
velocity time series with projections of 1-D correlations at ∆x=
0 and∆y= 0, (b) 2-D spectra obtained from the 2-D correlation
and (c) 1-D streamwise (—) and 1-D spanwise (- - -) spectra
obtained by integrating the 2-D spectra.

spectrum of streamwise velocity fluctuations which is obtained
by taking a two dimensional Fourier transform ofRuu(∆x,∆y),

φuu(kx,ky) =

∫ ∫ ∞

−∞
Ruu(∆x,∆y)e− j2π(kx∆x+ky∆y)d(∆x)d(∆y).

(2)
Here j is a unit imaginary number. Results forφuu(kx,ky) are
presented as a function ofλx and λy. If one considers the
streamwise (λx) and spanwise (λy) length scales as the length
and width (respectively) of the eddies in the flow, the 2-D spec-
trum can be considered as energy contribution of different as-



pect ratio eddies. Figure 2(c) shows the 1-D streamwise and
spanwise spectra ofu obtained after integrating the 2-D spec-
trum (shown in figure 2(b)) acrossλy andλx respectively. We
note that the area under the 1-D streamwise and spanwise spec-
tra is equivalent to the variance of the streamwise velocityat
that wall-normal location.

Validation & Correction using DNS

The results obtained from the experiments are validated against
the DNS of ZPG boundary layer data of Silleroet al. [9]. To
this end, a two-dimensional Fourier transformation is carried
out on the 2-D correlation obtained from the DNS database.
Figure 3 shows a comparison between a contour of constant
energy from the 2-D spectra, atkxkyφuu/U2

τ = 0.15, from both
experiments and DNS. The results show good agreement be-
tween the experimental (· · · ) and DNS (—) results atz+ ≈ 200
(figure 3b), however, closer to the wall (z+ ≈ 100) a larger
disagreement in the small scale region is present (figure 3a).
This discrepancy is likely to be caused by insufficient spatial
resolution of the experiments due to the initial spacing (dyinitial )
between the hot-wires (see figure 1). It is to be noted that the
spatial resolution issue dealt with in this study is relatedto the
initial spacing between the hot-wires (dy+initial ) and not to the
sensor size (l+). From figure 1, the smallest spanwise length
scale that can be resolved by this arrangement of hot-wires is
limited todyinitial . Therefore, all the points between∆y= 0 and
∆y = dyinitial in the spanwise correlation map are obtained by
linear interpolation (other interpolation schemes were found to
be more susceptible to noise present in the experimental data).
Hence, the wavelength corresponding to a spanwise spacing of
dy+initial would act as a cut-off wavelength (dashed line in figure
3) and all the smaller scales (below the dashed line) could
be impacted by the uncertainty of the interpolation scheme.
We note that this discrepancy is more significant closer to the
wall as there is more contribution from scales closer to the
cut-off wavelength (atz+ ≈ 100). Further, the area under the
2-D spectra has to be equal to the variance at that wall-normal
location, therefore, any unresolved energy at smaller scales
would be redistributed across larger scales. Hence, to minimise
such a scenario, ideallydy+initial should be sufficiently smaller
so that the smallest scales are well resolved. However, for the
present experimental technique, it is not physically possible to
reducedy+initial below a limit where the two hot-wires come
in contact with each other. This calls for the necessity of a
correction scheme to account for the spatial resolution issue
associated with the initial spacing between the hot-wires.

Accordingly, a method is adopted based on the DNS data avail-
able, to correct for the spatial resolution issue associated with
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Figure 3: Comparison of experimental and DNS results for
kxkyφuu/U2

τ = 0.15 at Reτ ≈ 2000 and, (a)z+ ≈ 100 and (b)
z+ ≈ 200; where,· · · · · · uncorrected experiment; —— cor-
rected experiment and—— DNS

dy+initial . Figure 4 shows the 1-D correlation in the spanwise di-
rection obtained using DNS data, which is interpolated to match
the experimental resolution. Here, the data points correspond-
ing to a spanwise length of∆y+ ≤ dy+initial is initially omitted
from the original correlation but is recomputed using linear in-
terpolation scheme (red symbols in figure 4) to match the exper-
imental conditions. The computed 2-D spectra from the original
and interpolated DNS correlation functions are shown in fig-
ures 5(a) and 5(b) respectively. The difference (∆kxkyφ+uu) of
the two spectra is computed and shown in figure 5(c). This dif-
ference corresponds to the amount of energy redistributed due
to dy+initial . The 2-D spectra calculated from experiments is now
corrected by adding this difference to it. Namely,

∆kxkyφ+uu =

[

kxkyφuu

U2
τ

]

DNS,o
−

[

kxkyφuu

U2
τ

]

DNS,i
(3)

[

kxkyφuu

U2
τ

]

EXP,c
=

[

kxkyφuu

U2
τ

]

EXP
+∆kxkyφ+uu. (4)

where the subscriptsDNS,o andDNS,i represents original and in-
terpolated DNS results respectively. Similarly,EXP,c and EXP
represents the corrected and uncorrected experimental results
respectively. As one would expect, the difference is largest near
λ+

y corresponding tody+initial (see white dashed line in figure
5). A contour of constant energy in the corrected experimental
spectrum (—) is compared against the DNS(—) as shown in fig-
ure 3. A good agreement with DNS is observed at smaller scales
where as the uncorrected experimental spectrum (· · ·) shows a
mismatch.

Relevance to High Reynolds number Measurements

The present work is aimed to set the stage for a larger experi-
mental campaign at higher Reynolds numbers. To this end, the
correction method discussed is highly relevant as the smallest
scales are typically harder to resolve with increasing Reynolds
numbers. Consequently, one would require even smaller spac-
ing between the hot-wires to maintain a fixed spacing in vis-
cous units. Hutchinset al. [4] has shown that at smaller scales,
the energy contribution shows minimal variance with increas-
ing Reynolds numbers. Equipped with this knowledge, the pro-
posed correction scheme can be easily applied to high Reynolds
number databases as well. To illustrate this, the DNS data ob-
tained atReτ ≈ 2000 is used to correct the experimental data
obtained atReτ = 3350 at matchedz+. The results are given in
figure 6 which show good agreement at the smaller scales be-
tween the uncorrected experimental and interpolated DNS spec-
trum (figure 6a). Furthermore, after the correction, the small
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Figure 4: 1-D spanwise correlation demonstrating the method
of correctingdy+initial error.
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Figure 5: (a) 2-D spectra obtained from the original DNS correlation, where and represent the relationshipsλy/z∼ λx/z and
λy/z∼ (λx/z)1/2 respectively as reported by Del Alamoet al. [3], (b) 2-D spectra obtained from the interpolated DNS correlation and
(c) difference between (a) and (b).
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Figure 6: Comparison of experimental (Reτ = 3350) and DNS
(Reτ ≈ 2000) results atkxkyφuu/U2

τ = 0.15, (a) before correc-
tion where,· · · · · · uncorrected experiment and· · · · · · interpo-
lated DNS and (b) after correction where, —— corrected ex-
periment and—— original DNS

scales now agree with the original DNS 2-D spectrum (figure
6b). The agreement is only expected at smaller scales since
we are comparing two different Reynolds numbers. Therefore,
the proposed correction enables one to compare the 2-D spectra
across multiple Reynolds numbers and wall heights, while still
maintaining a practicaldyinitial .

Summary and Conclusions

An experimental technique to measure the 2-D energy spectra
of the streamwise velocity in a turbulent boundary layer is in-
troduced. The technique involves the use of a pair of hot-wire
sensors that are sampled simultaneously for different spanwise
spacings. A description of how to construct a 2-D correlation,
as a function of streamwise and spanwise distance, from the ve-
locity time series is presented. This procedure is then usedto
compute the 2-D spectra, as a function of streamwise and span-
wise wavelengths. Results are validated against the statistics
computed from DNS databases at matched Reynolds numbers.
This comparison revealed the importance of the initial spacing
between the hot-wires and its detrimental impact on resolving
the small scale region of the 2-D spectra. To account for this, a
correction scheme is outlined based on results computed from
DNS databases. Collectively, the proposed experimental tech-
nique and correction schemes lay a foundation for future works
at higher Reynolds numbers.

Acknowledgement

The authors gratefully acknowledge the support from the Aus-
tralian Research Council.

References

[1] Chung, D., Marusic, I., Monty, J.P., Vallikivi, M., and
Smits, A.J., On the universality of inertial energy in the log
layer of turbulent boundary layer and pipe flows,Exp. Flu-
ids, 56, 2015, 1–10.

[2] Davidson, P.A., Nickels, T.B. and Krogstad, P-A., The log-
arithmic structure function law in wall-layer turbulence,J.
Fluid. Mech, 550, 2006, 51–60.

[3] Del Alamo, J.C., Jimenez, J., Zandonade, P. and Moser,
R.D., Scaling of the energy spectra of turbulent channels,J.
Fluid. Mech, 500, 2004, 135–144.

[4] Hutchins, N., Nickels, T.B, Marusic, I. and Chong, M.S.,
Hot-wire spatial resolution issues in wall-bounded turbu-
lence,J. Fluid. Mech, 635, 2009, 103–136.

[5] Nickels, T.B., Marusic, I., Hafez, S. and Chong, M.S., Evi-
dence of thek−1

1 law in a high-Reynolds-number turbulent
boundary layer,Phys. Rev. Lett, 95, 2005, 074501.

[6] Perry, A.E. and Chong, M.S., On the mechanism of wall
turbulence,J. Fluid. Mech, 119, 1982, 173–217.

[7] Perry, A.E., Henbest, S. and Chong, M.S., A theoretical and
experimental study of wall turbulence,J. Fluid. Mech, 165,
1986, 163–199.

[8] Rosenberg, B.J., Hultmark, M., Vallikivi, M., Bailey,
S.C.C. and Smits, A.J., Turbulence spectra in smooth and
rough-wall pipe flow at extreme Reynolds numbers,J.
Fluid. Mech, 731, 2013, 46–63.

[9] Sillero, J.A., Jimenez, J. and Moser, R.D., Two-point statis-
tics for turbulent boundary layers and channels at Reynolds
numbers up toδ+ ≈ 2000,Phys. Fluids, 26, 2014, 105109.

[10] Townsend, A.A.,The structure of turbulent shear flow,
Cambridge University Press, 1976.


